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LETTER TO THE EDITOR 

Random walks on hierarchical lattices at the 
percolat ion threshold 

D C Hong 
Center for Polymer Studiest and Department of Physics, Boston University, 
Boston MA 02215. USA 

Received 15 August 1984 

Abstract. Random walks on hierarchical lattices are considered at the percolation threshold. 
Real-space renormalisation methods are employed to obtain the exact fractal dimension 
of the incipient infinite cluster ( I IC) ,  d,, and the fractal dimension of the effective one- 
dimensional resistance length of the IIC, d,, for some hierarchical lattices. The recent 
conjecture of Aharony and Stauffer does not hold for diamond and Wheatstone bridge 
hierarchical lattices. 

In studies of random walks on percolation clusters at the percolation threshold, a 
remarkable universality was conjectured by Alexander and Orbach ( 1982) which states 
that d ,  = 5df, for d 2 2, where d ,  is the random walk dimension and df is the fractal 
dimension of the substrate. Early numerical works (Ben-Abraham and Havlin 1983, 
Pandey and Stauffer 1983) as well as E expansion (Dasgupta et a1 1977) supported 
the Alexander and Orbach (AO) conjecture. However, recently, arguments against the 
AO conjecture began to appear in the literature (Coniglio and Stanley 1984, Family 
and Coniglio 1984, Harris et a1 1984). In particular the most accurate numerical works 
of four different groups reached the conclusion that the AO conjecture definitely fails 
in d = 2 (Zabolitzky 1984, Herrmann er al 1984, Hong et al 1984a, Lobb and Frank 
1984). The failure of the AO conjecture implies that the frontier sites of the walker (or 
growth sites in the terminology of Leyvraz and Stanley 1983) is not proportional to 
( SN)-’” ,  where SN is the number of sites visited by the walker at time step N (Rammal 
and Toulouse 1983, Leyvraz and Stanley 1983, Alexander 1983, Ben-Abraham and 
Havlin 1983). 

In order to understand the failure of the AO conjecture in percolation, Aharony 
and Stauffer (1984) have recently proposed the startling conjecture that for any random 
fractal with df S 2-4, one has d ,  = df + 1. The physical idea behind this is that the frontier 
sites of the walker are on the sphere cut of radius R (see also Alexander 1983). Using 
the relation d ,  = df+ d,  (Alexander and Orbach 1982, Stanley and Coniglio 1984)- 
where d ,  is the fractal dimension of the effective one-dimensional resistance length of 
IIc-one has from Aharony and Stauffer (AS) that d ,=  1 if dr<2. This is intriguing 
and calls for a direct test. 

In this letter we construct random fractals whose fractal dimension is less than two 
and obtain the exact value d,. The result serves to test the validity of the AS conjecture 
in random fractals. 
t Supported in part by NSF, ARO, and ONR. 
I: The proposal of Aharony and Stauffer (AS) that the lower critical dimension of the AO conjecture is df = 2 
was independently proposed by Coniglio and Stanley (1984). 
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Consider a diamond hierarchical lattice (figure (1 a ) )  that is constructed by an 
iterative generation of the base set. Each bond is occupied with probability p and 
absent with 1 - p .  For the nth order generation, the recursion relation for P,,, the 
occupation probability, satisfies (Kaufman and Andelman 1984) 

Pn,l = 2Pz, - P", ( 1 )  - 
which has two trivial fixed points p = 0, 1 and one non-trivial point P* = (45 - 1)/2 = 
0.618, which governs the percolating phase. In the vicinity of the percolation threshold, 
we define the fractal dimension of the IIC through 

M - tdf, ( 2 )  

where M is the mass of IIC and 5 is the correlation length. Let the mass and correlation 
length of the nth generation be M,, and e,, respectively. Then under rescaling transfor- 
mation, M,, and Mfl-l satisfy 

(Ml-l/Mfl) = ( 5 n - 1 / 5 t J d f .  (3) 

( a  I I b i  

Figure 1. Construction of ( a )  diamond and ( b )  Wheatstone bridge hierarchical lattices by 
decoration (see Berker and Ostlund 1979, Griffiths and Kaufman 1981, and Kaufman and 
Griffiths 1984). Black sites are decimated upon renormalisation. 

Therefore the fractal dimension df becomes 

4 = log ( Mfl - I / Mfl I/ log( 5n- 1 / 5n). (4) 

Clearly (,,-,/(,, = 2t .  Since mass is the sum of total bonds, M,, satisfies the obvious 
linear scaling relation 

Mn ( A  1 = AMn ( 1 ), ( 5 )  

where 1 is the mass of each bond and A is an arbitrary scale parameter. 
After decimation (see figure l ) ,  we have (Hong and Stanley 1983) 

4= log(A,lP*)/log 2 ,  ( 6 )  
where A ,  is the mean number of bonds connecting the top and bottom of the base. 
With bond occupation probability p,  A, satisfies 

(7) A, =4p4+ 12p3q+4p2q2/,,,* = 1.888. 

Substituting ( 7 )  into (4), we obtain df=  1.611, which is less than 2.  

t The definition of distance and correlation length on the hierarchical lattices is not clear. However if we 
define the minimum path as the distance between two points, then the usual definition of correlation length 
in critical phenomena holds on the hierarchical lattices as well (see Berker and Ostlund 1979, Griffith and 
Kaufman 1981, 1982, Kaufman and Griffith 1984). 
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Now we turn our attention to the calculation of the fractal dimension of the effective 
one-dimensional resistance length L, of IIC defined through 

L, - [*.. (8) 

L ; " ) ( A ~ )  = AL',")( p ) ,  (9) 

LV),  which is the L, of the nth generation, also satisfies the linear scaling relation 

where A is an arbitrary scale variable and p is a resistance of one bond. It follows 
upon decimation that 

dr= log(ArlP*)llog 2, (10) 

where A, is the mean resistance of the base at p = p * .  Using A, = -3p4+ 4p21 p = p *  = 1.090, 
we arrive at d,  = 0.8189, which is not in accord with the AS conjecture. We have also 
calculated d ,  for a Wheatstone bridge hierarchical lattice (figure l (b) )  and we find 
that df= 1.71 and d,  = 0.9386, which again is less than 1. Therefore, at least in the case 
of diamond and Wheatstone bridge hierarchical lattices, the AS conjecture fails. It is 
conceivable that the AS conjecture does not hold in other hierarchical lattices either. 

We conclude with several observatigx. First, using the relation d ,  = d,+ d,, one 
can calculate the fracton dimension d=2dr/d,. For a diagond hierarchy we get 
d =  1.326, and for a Wheatstone bridge hierarchy we have 6= 1.296. Note that the 
fracton dimension for both cases is close to $. Second, since the magnetic scaling 
power Yh is the same as df (Stanley 1977, Hong er al 1984b, c), the Potts model in the 
limit q +  1 can be used to obtain the fractal dimension of IIC.  However, due to the 
heterogeneity of the coordinates, the treatment of external fields in the hierarchical 
lattices is awkward (Melrose 1983). The fractal dimension serves instead to define Yh 
unambiguously in the limit q + 1 on the hierarchical lattices. 

In summary, we have used the simple real-space renormalisation method to obtain 
the exact fractal dimension of IIC and the effective one-dimensional resistance length 
of IIC as well as the fracton dimension for the families of hierarchical lattices. Results 
are not consistent with the recent conjecture of Aharony and Stauffer. 

I wish to thank S Havlin, W Klein, A Aharony, J Given and F Leyvraz for stimulating 
discussions. I especially thank H E Stanley for his helpful criticism of this manuscript. 
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